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ABSTRACT 

Background Natural history studies in SMA have primarily focused on infants and 

children.  Natural history studies encompassing all age groups and SMA types are 

important for the interpretation of treatment effects of recently introduced SMN 

augmenting therapies.  

Methods We conducted a cross-sectional study to investigate muscle strength, 

Hammersmith Functional Motor Scale (Expanded) scores and the patterns of muscle 

weakness in relation to age and SMA type. 

Results We included 180 patients with SMA types 1-4 in the age range 1-77.5 years 

and median disease duration of 18 years (range 0-65.8 years). With the exception of 

the early phases of disease in which children with SMA types 2 and 3 may achieve 

new motor skills and show a temporary increase in muscle strength, cross sectional 

data suggest that declining muscle strength and loss of motor skills over time are 

characteristic for all SMA types. Mean loss of strength is at least 1 point on the MRC 

and 0.5 point on the HFMS(E) scores per year. Trend lines compatible with 

deterioration of motor function and muscle strength start in childhood and continue 

into adulthood. The age at loss of specific motor skills is associated with disease 

severity. Triceps, deltoid, iliopsoas and quadriceps are the weakest muscles in all 

patients. Hierarchical cluster analysis did not show a segmental distribution of 

muscle weakness as was suggested previously.  

Conclusions Progressive muscle weakness, and loss of motor function are 

characteristic of all SMA types and all ages.  
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INTRODUCTION 

Hereditary proximal spinal muscular atrophy (SMA) shows a striking variability in 

disease severity despite that virtually all patients have the same genetic defect, i.e. a 

homozygous deletion of the SMN1 gene.[1-3] This is primarily explained by variation 

in the copy number of the backup SMN2 gene.[3, 4]  

Natural history studies that document the rate of progression of motor deficits in 

specific SMA types and age groups are important for the design of clinical trials to 

test efficacy of disease-modifying therapies.[5-9] Recent studies have primarily 

focused on younger patients, in particular infants with SMA type 1 and children and 

teenagers with types 2 and 3. Natural history studies that capture the full life cycle of 

SMA and its complete severity spectrum are scarce. (Supplementary material Table 

S1 for overview)  

Information on disease progression later in life is important for gaining insight into 

care needs of older SMA patients and the interpretation of treatment efficacy of SMN 

protein augmenting therapies after childhood. 

Documenting disease progression in patients with longstanding, severe muscle 

weakness, or with milder forms of SMA with potentially very slow progression may 

be challenging.[10, 11] Nevertheless, more detailed insight into disease progression 

later in life has become highly relevant now that the high-cost antisense 

oligonucleotide Spinraza (nusinersen) has also been approved for the use in adults 

with SMA, despite the lack of evidence for efficacy from phase 3 trials in this age 

group.  

Prospective longitudinal studies over extended periods of time are logistically 

challenging. In order to better understand the disease course of SMA in older 

children and adults, we analysed data from our prospective nationwide cohort study 
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on SMA in The Netherlands.[3] Using a cross-sectional approach, we investigated 

patterns of muscle strength and motor scores in 180 children, adolescents and adult 

patients, encompassing the full spectrum of clinical phenotypes including older 

patients with SMA.   

 

METHODS 

We performed a cross-sectional study on patients with SMA types 1c-4 in The 

Netherlands, enrolled between September 2010 and August 2016. We used age at 

onset and acquired motor milestones to define SMA type (see for details Table S2). 

Methods are described in the Supplementary File.  

 

RESULTS 

Patient characteristics 

We included 180 patients with SMA types 1c-4, of whom 108 (60%) were ≥18 years 

old. Patient characteristics are presented in Table 1.  

 

Table 1 

 

Decline of motor function and muscle strength 

Muscle sum scores (Figure 1 AB) and HFMSE scores (Figure 1 E) were lower in 

older patients, irrespective of SMA type (p<0.05).  

 

Figure 1 ABCDE 
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We used linear regression to estimate the rate of decline in muscle strength over 

time and divided patients into age cohorts to estimate age-specific decline in muscle 

strength and motor function, stratifying both analyses for SMA type (Figure 1 A). The 

estimated average decline in MRC sum scores was 1 point per year (Figure 1 A). 

HFMSE scores declined by an estimated 0.5 points per year (Figure 1 E). There 

were clear differences in trend line slopes between SMA types and between age 

cohorts with the same SMA type (p<0.05; Figure 1 B-D). In general, muscle 

deterioration started in the lower limbs (Figure 1 D), followed by progressive decline 

of strength in upper limbs (Figure 1 C). Patterns of deterioration differed slightly 

among SMA types. In SMA type 2a we observed a steady decrease in muscle 

strength and motor function, whereas in SMA types 2b and 3 there was a relatively 

stable phase of muscle strength followed by a more pronounced decline in roughly 

the third decade in SMA type 2b and type 3a and after the age of 40 in SMA type 3b 

(Figure 1 BCD).  

 

SMA type was associated with the age at which patients lost specific motor skills 

(Table S3). The age at which patients lost the ability to sit without support differed 

between SMA types 2a, 2b and 3a (mean age 8.7, 16.5 and 19 years, respectively; 

p<0.01). Similarly, patients with SMA type 2b lost the ability to stand or walk with 

aids at a significantly younger age than those with type 3a (mean age 5.5 and 15 

years, respectively; p=0.03). Loss of the ability to walk without support in SMA type 3 

generally occurred in the second decade in patients with onset before 3 years (mean 

11.5 years; range 2.5-35), the fourth decade in those with onset between 3-12 years 

(mean 32 years; range 6.5-59) and after the fifth decade in case of onset after 12 

years (mean 59 years; range 33-66). Two patients with SMA type 4 needed walking 
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aids 15 years after disease onset, although they could still walk short distances 

unaided (Supplementary material; Table S3).  

MRC sum score and HFMS(E) score differed significantly between SMA types 

(p<0.01). HFMS(E) score correlated strongly with the MRC sum score, lower limb 

score and upper limb score (Spearman rho’s correlation coefficient= 0.91; p<0.001), 

although these correlations were not linear and the correlation between functional 

changes by HFSM(E) and muscle strength by MRC scores was present only at the 

higher end of both scores. We observed a ceiling effect of the HFMS in SMA type 3 

and a floor effect of the HFMS(E) for SMA types 1c and 2 (Figure 2 AB).  

 

Figure 2 AB 

 

Stratification by SMN2 copy number was not informative, mainly because of the 

under-representation of patients with 2 and 4 SMN2 copies in our cohort. 

 

Patterns of muscle weakness 

Triceps, deltoid, iliopsoas and quadriceps were the weakest muscle groups in all 

patients. Strength of flexors and extensors of the hand and fingers, biceps and 

hamstrings was relatively preserved in the majority of patients. Twenty-one out of 

180 patients (12%) had biceps weakness MRC <3 and 33 out of 180 (18%) patients 

had a severely impaired hand function. 

Hierarchical clustering of strength in individual muscles identified proximal and distal 

muscles as principal components (Figure 3). Weakness was not segmentally 

distributed  (e.g. more pronounced in C5 or L1-3) as suggested previously [10]. 

Patterns of weakness were similar in all SMA types. 
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Figure 3 

 

Discussion 

The natural history of SMA has primarily been studied in infants and children. Recent 

studies have shown age-dependent differences in disease progression.[12, 13] In 

contrast, natural history in older patients with genetically confirmed SMA has not 

been studied in detail due to the rareness of the disease in combination with the slow 

rate of progression of weakness and motor impairment.[10, 14] The cross-sectional 

data from this cohort of 180 genetically confirmed patients, including children, 

adolescents and adults with SMA types 1c-4 in all disease stages of SMA throughout 

life, are a proxy for longitudinal natural history data. Progressive muscle weakness, 

motor function impairment and disability are characteristic of all SMA types and are 

not restricted to children or more severe phenotypes. The data indicate that the 

patterns of gradual progressive loss of motor function are comparable, but that time 

at onset of a more pronounced decline may differ between SMA types, but cannot be 

predicted by SMN2 copy number.  

In our cohort, muscle strength declined by an estimated 1 MRC point and 0.5 

HFMS(E) point per year. This is in line with previous observations in adult patients 

with SMA type 3b.[10] Similar, relatively small declines have also been described in 

children and young adults with SMA 2 and 3.[10, 15-18] The ceiling and floor effects 

of the HFMS(E) are a well-known shortcoming of these widely used motor 

measurements, and might even have caused an underestimation of the extent of 

decline per year. The effects of cumulative yearly loss of only a few MRC or 

HFMS(E) points are obviously not trivial and will eventually affect daily functioning, 

simon
Highlight
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depending on the patient’s functional abilities at baseline. This is, for example, 

reflected by the loss of commonly acquired motor milestones, i.e. sitting without or 

standing with support, that occurs at an earlier age in patients with SMA type 2 than 

type 3. More generally, the progression of muscle weakness after the age of 20 

years indicates that SMN deficiency (and possibly its further decline with advancing 

age[19]) remain relevant in adulthood and that functional deterioration is not only 

secondary to growth in childhood and adolescence after stalled motor 

development.[20]  

It has previously been shown that disease progression in children is age- and SMA 

type-specific.[13, 21] Our data suggest that different rates of progression may also 

be an SMA feature in adulthood. Although our study lacked statistical power, disease 

progression may be more pronounced during specific periods of life, i.e. roughly the 

second, third and fifth decades in SMA types 2, 3 and 4, respectively. This would 

suggest that the impact of SMN augmenting therapies,[7, 8] which have so far not 

been tested in phase 3 trials in adults, may depend on timing of treatment in relation 

to age and SMA type.  

A second observation is the presence of differences in muscle vulnerability in SMA. 

Weakness in patients with SMA is generalized but predominates in axial and specific 

proximal muscle groups, i.e. deltoid, triceps, and quadriceps muscles. This 

observation has not yet been explained. In mouse models of SMA, median motor 

neuron pools in the lumbar segments of the spinal cord are more vulnerable than 

their more laterally located counterparts due to an earlier loss of synaptic 

connectivity[22] and similar differences in motor neuron vulnerability may exist in 

humans. We could not corroborate the previous suggestion that some segments of 

the cervical or lumbar spinal cord are more vulnerable than others.[10] The 
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differences in vulnerability of bulbar muscles innervated by the same trigeminal 

nucleus of the brainstem supports the concept that specific motor neuron pools are 

most vulnerable to SMN deficiency.[23-25] An alternative, or possibly related, 

explanation might be that motor unit sizes of muscles determine their vulnerability, 

i.e. that muscles with on average larger but fewer motor units are weaker than those 

with smaller motor units.[26]  

This study has several limitations. Although we think that a cross-sectional design is 

the most feasible way to study disease progression in the course of decades, 

longitudinal follow-up of patients is obviously superior and would allow a more 

detailed analysis of differences in disease progression. However, such results would 

require a sustained effort over long period of time and a multicenter approach. 

Conclusions on rate and degree of decline in muscle strength can therefore not be 

more detailed and should be interpreted with care. Secondly, a cross-sectional 

approach may suffer from recall bias. We did our best to minimize bias, for example 

by using all available sources that would provide evidence of achieved motor 

milestones, including family picture books and data from files from general 

practitioners. Thirdly, the HFMS(E) and MRC scores are widely used to asses 

muscle strength and function in SMA. However, due ceiling or floor effects and 

possibility of large inter- and intra-rater differences in HFSME and MRC resepctively, 

both measures are far from perfect but alternative measures or biomarkers reflecting 

disease progression are not present. Lastly, splitting patients in more than just 3 

SMA types (i.e. 1c, 2a, 2b, 3a, 3b, 4) results in subgroups with smaller numbers of 

patients and this clearly limits statistical power, in particular in patients with late-

onset SMA.  
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The recent introduction of the first high-cost disease course-modifying drug for SMA 

underlines the need for methodology to monitor treatment efficacy.[7, 8] Our data 

suggest that timing of treatment in SMA types 2, 3 and 4 may also be crucial in 

adulthood.[7] Additional tools to predict and determine treatment efficacy particularly 

in patients with SMA type 3 and 4 and adult patients of all types are urgently needed, 

if only to justify the burden to patients and high treatment costs.  
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Figure legends 
 
Figure 1ABCDE. Muscle weakness in relation to age in SMA types 1c-3b.  
Muscle strength deteriorates with an estimated mean of -1 MRC sum score point per 
year. A. Trend lines of MRC sum score representing muscle strength show a linear 
decline irrespective of age or SMA type. B, C and D. MRC scores of total strength (B), 
upper limbs (C) and lower limbs (C) respectively, represented per age group. Data 
suggest differences in the relation of deterioration of muscle weakness with age 
between SMA types. Analysis was underpowered to statistically confirm different 
phases of deterioration. E. HFMSE score declines over years in all SMA types.  
Error bars represent 95% CI. 
 
Figure 2AB. Correlation between HFMS(E) and MRC sum score and their ceiling effects 
Same patient cohorts are represented in A (HMFS versus MRC sum score) and B 
(HFSME versus MRC sum score). Maximum scores are 40 and 66 points in HMFS and 
HMFSE, respectively. Correlation between HFMS or HFMSE scores and MRC sum score 
is not linear, but shows an exponential difference at both ends of the scores. Dotted 
lines represent 95% confidence intervals. 
 
Figure 3.  Pattern of muscle weakness with hierarchical clustering of muscle strength in 
180 patients with SMA types 1c-4 
Muscle strength in muscles from arms and legs is shown in the heatmap. Colours white 
through red correspond to MRC scores 1-5.  Each patient is represented by one column 
on the x-axis. Muscle groups are presented at the right y-axis. The left y-axis shows the 
dendrogram of clusters.  Two distinct clusters, i.e. of proximal (blue) and distal (green) 
muscle groups, were identified. There was no segmental distribution of weakness as 
suggested previously. 
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Table 1. Baseline characteristics 

SMA type Type 1c 

(n=18) 

Type 2a 

(n=44) 

Type 2b 

(n=36) 

Type 3a 

(n=40) 

Type 3b 

(n=36) 

Type 4 

(n=6) 

Gender (F:M) 9:9 27:17 23:13 22:18 15:21 4:2 

Median age at 

inclusion in years 

(range) 

10.5 

(1.4-49.7) 

15.0 

(1.8-

42.3) 

18.2 

(2.8-66.8) 

30.5 

(1.3-65.7) 

42 

(14-77.5) 

50.8 

(41-68.8) 

Median disease 

duration at time of 

inclusion in months 

(range) 

118 

(9.6 - 590) 

171 

(14-492) 

206 

(54 -790) 

347 

(18-758) 

357 

(12-738) 

136 

(91-291) 

Median age at onset 

in months (range) 

6 

(1-9) 

8 

(3.5-24) 

12 

(6-36) 

18 

(6-54) 

114 

(24-294) 

456 

(366-522) 

SMN2 copy 

number  (n) 

2 1 1 1 1 1 0 

3 17 40 29 18 6 0 

4 0 2 4 15 24 5 

5 0 0 0 0 2 0 

Scoliosis surgery (%) 11 (70) 31 (70) 21 (58) 11 (30) 2 (6) 0 (0) 

Median age at time of 

scoliosis surgery in 

years (range) 

7.9 

(4.1-19.5) 

7.9 

(3.7-15.8) 

9.8 

(7.3-31.8) 

14.1 

(10.1-

54.5) 

15.0 

(14-16) 

NA 

Median HFMS 

(range) 

0 (0-2) 2 (0-25) 5 (0-35) 11 (0-40) 30 (2-40) 38 (36-

40) 

Median HFMSE 

(range) 

0 (0-4) 2 (0-25) 6 (0-37) 10 (0-57) 32 (2-66) 53 (43-

56) 
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Median MRC sum 

score (range) [n] 

62 

(34-98) [11] 

71 

(39-124) 

[36] 

93 

(63-141) 

[30] 

105 

(52-160) 

[30] 

150 

(70-167) 

[27] 

155 

(120-162) 

[6] 

 
Legend Table 1. NA= not applicable. n= number of patients without missing data on 

any of the analysed muscles. In case of contractures, the MRC score was scored as 

‘missing’.  
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